Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Algorithms of the Copula Fit to the Nonlinear Processes in the Utility Industry

Publikācijas veids Zinātniskais raksts, kas indeksēts Web of science un/vai Scopus datu bāzē
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Algorithms of the Copula Fit to the Nonlinear Processes in the Utility Industry
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.1. Matemātika
Autori Andrejs Matvejevs
Jegors Fjodorovs
Anatoliy Malyarenko
Atslēgas vārdi Copula; Diffusion processes; Time series; Semi parametric regressions
Anotācija Our research studies the construction and estimation of copula-based semi parametric Markov model for the processes, which involved in water flows in the hydro plants. As a rule analyzing the dependence structure of stationary time series regressive models defined by invariant marginal distributions and copula functions that capture the temporal dependence of the processes is considered. This permits to separate out the temporal dependence (such as tail dependence) from the marginal behavior (such as fat tails) of a time series. Dealing with utility company data we have found the best copula describing data - Gumbel copula. As a result constructed algorithm was used for an imitation of low probability events (in a hydro power industry) and predictions.
DOI: 10.1016/j.procs.2017.01.174
Hipersaite: https://www.sciencedirect.com/science/article/pii/S1877050917301758?via%3Dihub 
Atsauce Matvejevs, A., Fjodorovs, J., Malyarenko, A. Algorithms of the Copula Fit to the Nonlinear Processes in the Utility Industry. Procedia Computer Science, 2017, Vol.104, 572.-577.lpp. ISSN 1877-0509. Pieejams: doi:10.1016/j.procs.2017.01.174
Pilnais teksts Pilnais teksts
Publikācijas versija
Licence
Papildinformācija Citējamību skaits:
  • Scopus  0
ID 26254