Data Dimension Reduction for Visual Analytics: A Case Study of Oil-in-Water Detection
Our Harsh and Fragile Ocean: OCEANS ’17 MTS/IEEE Anchorage
2017
Ottar Laurits Osen,
Anete Vagale,
Hao Wang,
Karina B. Hjelmervik,
Halvor Schøyen
Many different sensors have been installed on board vessels,
a new framework is urgently needed to form a Common
Operational Picture (COP), to assist the on-board operations
and onshore analysis. In this paper, based on the Visual
Analytics framework, we present a spatiotemporal dimension
reduction method based on a real world case of oil combat
operation. With our prototype, we show that how dimension
reduction of spatiotemporal data will improve visualisation and
ease analysis.
Atslēgas vārdi
Big data, LiDAR
Hipersaite
https://ieeexplore.ieee.org/document/8232294/
Osen, O., Vagale, A., Wang, H., Hjelmervik, K., Schøyen, H. Data Dimension Reduction for Visual Analytics: A Case Study of Oil-in-Water Detection. No: Our Harsh and Fragile Ocean: OCEANS ’17 MTS/IEEE Anchorage, Amerikas savienotās valstis, Anchorage, 18.-21. septembris, 2017. Piscataway: IEEE, 2017, 1.-8.lpp. ISBN 978-1-5090-6429-8. e-ISBN 978-0-6929-4690-9.
Publikācijas valoda
English (en)