A Review of Self-Healing Concrete for Damage Management of Structures
Advanced Materials Interfaces 2018
Nele D. De Belie, Elke Gruyaert, Abir Al-Tabbaa, Paola Antonaci, Cornelia Baerǎ, Diāna Bajāre, Aveline Darquennes, Robert T Davies, Liberato Ferrara, Tony Jefferson, Chrysoula Litina, B. Miljević, Anna Otlewska, Jonjaua G. Ranogajec, Marta Roig-Flores, Kevin A. Paine, Paweł Łukowski, Pedro Serna, J.M. Tulliani, Snežana Vučetić, Jianyun Wang, Henk M. Jonkers

The increasing concern for safety and sustainability of structures is calling for the development of smart self-healing materials and preventive repair methods. The appearance of small cracks (<300 µm in width) in concrete is almost unavoidable, not necessarily causing a risk of collapse for the structure, but surely impairing its functionality, accelerating its degradation, and diminishing its service life and sustainability. This review provides the state-of-the-art of recent developments of self-healing concrete, covering autogenous or intrinsic healing of traditional concrete followed by stimulated autogenous healing via use of mineral additives, crystalline admixtures or (superabsorbent) polymers, and subsequently autonomous self-healing mechanisms, i.e. via, application of micro-, macro-, or vascular encapsulated polymers, minerals, or bacteria. The (stimulated) autogenous mechanisms are generally limited to healing crack widths of about 100–150 µm. In contrast, most autonomous self-healing mechanisms can heal cracks of 300 µm, even sometimes up to more than 1 mm, and usually act faster. After explaining the basic concept for each self-healing technique, the most recent advances are collected, explaining the progress and current limitations, to provide insights toward the future developments. This review addresses the research needs required to remove hindrances that limit market penetration of self-healing concrete technologies.

Atslēgas vārdi
bacteria-assisted self-healing, concrete, mineral admixtures, mortar, polymers, self-healing

De Belie, N., Gruyaert, E., Al-Tabbaa, A., Antonaci, P., Baerǎ, C., Bajāre, D., Darquennes, A., Davies, R., Ferrara, L., Jefferson, T., Litina, C., Miljević, B., Otlewska, A., Ranogajec, J., Roig-Flores, M., Paine, K., Łukowski, P., Serna, P., Tulliani, J., Vučetić, S., Wang, J., Jonkers, H. A Review of Self-Healing Concrete for Damage Management of Structures. Advanced Materials Interfaces, 2018, Vol.5, Iss.17, 1800074.-1800074.lpp. ISSN 2196-7350. Pieejams: doi:10.1002/admi.201800074

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196