Optimizing Artificial Neural Networks for the Evaluation of Asphalt Pavement Structural Performance
Gaetano Bosurgi, Orazio Pellegrino, Giuseppe Sollazzo

Artificial Neural Networks represent useful tools for several engineering issues. Although they were adopted in several pavement-engineering problems for performance evaluation, their application on pavement structural performance evaluation appears to be remarkable. It is conceivable that defining a proper Artificial Neural Network for estimating structural performance in asphalt pavements from measurements performed through quick and economic surveys produces significant savings for road agencies and improves maintenance planning. However, the architecture of such an Artificial Neural Network must be optimised, to improve the final accuracy and provide a reliable technique for enriching decision-making tools. In this paper, the influence on the final quality of different features conditioning the network architecture has been examined, for maximising the resulting quality and, consequently, the final benefits of the methodology. In particular, input factor quality (structural, traffic, climatic), “homogeneity” of training data records and the actual net topology have been investigated. Finally, these results further prove the approach efficiency, for improving Pavement Management Systems and reducing deflection survey frequency, with remarkable savings for road agencies.

Atslēgas vārdi
Artificial Neural Network (ANN), asphalt pavement, Long Term Pavement Performance (LTPP), neural network optimisation, Pavement Management System (PMS), structural performance

Bosurgi, G., Pellegrino, O., Sollazzo, G. Optimizing Artificial Neural Networks for the Evaluation of Asphalt Pavement Structural Performance. The Baltic Journal of Road and Bridge Engineering, 2019, Vol.14, No.1, 58.-79.lpp. ISSN 1822-427X. e-ISSN 1822-427X. Pieejams: doi:10.7250/bjrbe.2019-14.433

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196