This research investigated the use of electrospun nanofibers as reinforcing laminates in textiles to enhance their mechanical properties for use as smart and technical textile applications. Crimping plays a crucial role in textiles. Because of crimp, fabrics have extensibility, compressibility, and improved quality. Although crimping is inevitable for fabrics used in smart textiles, it is also a disadvantage as it could weaken the fibers and reduce their strength and efficiency. The study focused on preparing laminated textile composites by electrospinning a polyacrylonitrile (PAN) polymer onto textile fabric. The research examined the effect of electrospun nanofibers on the fabric by using a tensile testing machine and scanning electron microscopy. The results revealed that the prepared laminated textile was crimp-free because of the orientation of the nanofibers directly electrospun on the fabric, which exhibited perfect bonding between the laminates. Additionally, the nanofiber-reinforced composite fabrics demonstrated a 75.5% increase in the elastic moduli and a 20% increase in elongation at breaking. The study concluded that the use of electrospun nanofibers as laminates in textile composites could enhance the elastic properties, and prepared laminated composites will have the advantages of nanofibers, such as crimp-free elastic regions. Furthermore, the mechanical properties of the laminated textile composite were compared with those of the micromechanical models, providing a deeper understanding of the behavior of these laminated composites.