The propulsion and acceleration of nanoparticles with light have both fundamental and applied significance across many disciplines. Needle-free injection of biomedical nano cargoes into living tissues is among the examples. Here a new physical mechanism of laser-induced particle acceleration is explored, based on abnormal optothermal expansion of mesoporous vaterite cargoes. Vaterite nanoparticles, a metastable form of calcium carbonate, are placed on a substrate, underneath a target phantom, and accelerated toward it with the aid of a short femtosecond laser pulse. Light absorption followed by picosecond-scale thermal expansion is shown to elevate the particle's center of mass thus causing acceleration. It is shown that a 2 µm size vaterite particle, being illuminated with 0.5 W average power 100 fsec IR laser, is capable to overcome van der Waals attraction and acquire 15m sec−1 velocity. The demonstrated optothermal laser-driven needle-free injection into a phantom layer and Xenopus oocyte in vitro promotes the further development of light-responsive nanocapsules, which can be equipped with additional optical and biomedical functions for delivery, monitoring, and controllable biomedical dosage to name a few.