Accumulation of transverse cracks in carbon fiber heat resistant polymer (with bismaleimide formulation) cross-ply laminates during tensile loading at elevated temperatures and after long heat treatment is analysed. Data shows that both the iso-thermal heat treatment and testing at elevated temperatures reduce the transverse cracking resistance. A two-parameter Weibull failure stress distribution model with scale parameter degrading with heat treatment and elevated temperature is used for crack initiation analysis. The degradation is described by polynomial expansion including interaction terms. Data shows that the scale parameter dependence on the heat treatment time and the test temperature is rather linear. The same expansion parameters have been successfully used for laminates with the same constituents but with a different layup and fiber content.