With the recent increase in the threat posed by unmanned aerial vehicles (UAVs) operating in environments where conventional detection systems such as radar, optical, or acoustic detection are impractical, attention is paid to methods for detecting low-flying UAVs with small radar cross-section (RCS). The most commonly used detection methods are radar detection, which is susceptible to electromagnetic (EM) interference, and optical detection, which is susceptible to weather conditions and line-of-sight. This research aims to demonstrate the possibility of using passive optical fiber Bragg grating (FBG) as a sensitive element array for low-flying UAV detection and localization. The principle is as follows: an optical signal that propagates through an optical fiber can be modulated due to the FBG reaction on the air pressure caused by a low-flying (even hovering) UAV. As a result, a small target—the DJI Avata drone can be detected and tracked via intensity surge determination. In this paper, the experimental setup of the proposed FBG-based UAV detection system, measurement results, as well as methods for analyzing UAV-caused downwash are presented. High-speed data reading and processing were achieved for low-flying drones with the possible presence of EM clutter. The proposed system has shown the ability to, on average, detect an overpassing UAV’s flight height around 85 percent and the location around 87 percent of the time. The key advantage of the proposed approach is the comparatively straightforward implementation and the ability to detect low-flying targets in the presence of EM clutter.