Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building

Publikācijas veids Publikācija RTU zinātniskajā žurnālā
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.2. Datorzinātne un informātika
Autori Gints Jēkabsons
Jurijs Lavendels
Atslēgas vārdi Polynomial regression, regression modelling, basis function construction, model ensembling, heuristic search
Anotācija The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our previous research we considered an approach for polynomial regression model building which is different from the subset selection – letting the regression model building method itself construct the basis functions necessary for creating a model of arbitrary complexity without restricting oneself to the basis functions of a predefined full model. The approach is titled Adaptive Basis Function Construction (ABFC). In the present paper we compare the two approaches for polynomial regression model building – subset selection and ABFC – both theoretically and empirically in terms of their underlying principles, computational complexity, and predictive performance. Additionally in empirical evaluations the ABFC is compared also to two other well-known regression modelling methods – Locally Weighted Polynomials and Multivariate Adaptive Regression Splines.
Atsauce Jēkabsons, G., Lavendels, J. A Comparison of Subset Selection and Adaptive Basis Function Construction for Polynomial Regression Model Building. Lietišķās datorsistēmas. Nr.38, 2009, 187.-197.lpp. ISSN 1407-7493.
Pilnais teksts Pilnais teksts
ID 6642