Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Economic Forecasts with Bayesian Autoregressive Distributed Lag Model: Choosing Optimal Prior in Economic Downturn

Publikācijas veids Publikācija RTU zinātniskajā žurnālā
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Economic Forecasts with Bayesian Autoregressive Distributed Lag Model: Choosing Optimal Prior in Economic Downturn
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas
Autori Ginters Bušs
Atslēgas vārdi Bayesian inference, Bayesian autoregressive distributed lag model, forecasting, Litterman prior, optimal prior
Anotācija Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to variables containing more recent information. Second, greater uncertainty brought by a rapid economic downturn requires more space for coefficient variation, which is set by the overall tightness parameter. It is shown that the optimal overall tightness parameter may increase to such an extent that Bayesian ADL becomes equivalent to frequentist ADL. The results may be used in other fields of science where it is necessary to estimate/predict a process using Bayesian inference.
Atsauce Bušs, G. Economic Forecasts with Bayesian Autoregressive Distributed Lag Model: Choosing Optimal Prior in Economic Downturn. Datorvadības tehnoloģijas. Nr.42, 2010, 100.-105.lpp. ISSN 2255-9108.
Pilnais teksts Pilnais teksts
ID 8892