Assessing the Axial Buckling Load of a Pressurized Orthotropic Cylindrical Shell through Vibration Correlation Technique
Thin-Walled Structures 2019
F Franzoni, F Odermann, D Wilckens, Eduards Skuķis, Kaspars Kalniņš, M.A. Arbelo, R Degenhardt

Traditional buckling experiments of imperfection-sensitive structures like cylindrical shells can cause the permanent failure of the specimen. Nevertheless, an experimental campaign is crucial for validation of the design and numerical models. There is, therefore, interest in nondestructive methods to estimate the buckling load of such structures from the prebuckling stage. The vibration correlation technique allows determining the buckling load without reaching the instability point. Recently, a novel empirical vibration correlation technique based on the effects of initial imperfections on the first vibration mode demonstrated interesting results when applied to composite and metallic unstiffened cylindrical shells. In this context, this paper explores this novel approach for determining the axial buckling load of a metallic orthotropic skin-dominated cylindrical shell under internal pressure, which represents a simplified downscaled model of a launcher propellant tank. An experimental campaign consisting of buckling tests and noncontact vibration measurements for different axial load levels is conducted considering the specimen without and with three different internal pressure levels. The experimental results validate the above-mentioned vibration correlation technique for determining the axial buckling load of pressurized cylindrical shells. Moreover, finite element models are calibrated in order to evaluate the frequency variation within a broader and dense range of the axial loading leading to an assessment of the considered maximum load level and number of load steps as related to the deviation of the estimation. The results corroborate the applicability of the vibration correlation technique as a nondestructive experimental procedure to assess the axial buckling load of imperfection-sensitive orthotropic skin-dominated cylindrical shells under internal pressure. © 2019 Elsevier Ltd


Atslēgas vārdi
Buckling Imperfection-sensitive structures Nondestructive experiments Pressurized orthotropic cylindrical shells Vibration correlation technique
DOI
10.1016/j.tws.2019.01.009
Hipersaite
https://www.sciencedirect.com/science/article/pii/S0263823118307900?via%3Dihub

Franzoni, F., Odermann, F., Wilckens, D., Skuķis, E., Kalniņš, K., Arbelo, M., Degenhardt, R. Assessing the Axial Buckling Load of a Pressurized Orthotropic Cylindrical Shell through Vibration Correlation Technique. Thin-Walled Structures, 2019, Vol. 137, No. 1, 353.-366.lpp. ISSN 0263-8231. Pieejams: doi:10.1016/j.tws.2019.01.009

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196