The key parameter for degenerated semiconductor oxide plasmonic nanocrystals is the doping level. Hydrothermal and solvothermal approaches are considered to be less effective towards achieving high concentration of aliovalent donor dopants in a host oxide when compared to other synthesis methods that use long chain hydrocarbon solvents, fatty acids and fatty amines as precursors. Because of this, although they have several advantages such as sustainability, ease of use, relatively inexpensive reagents and apparatus and reduced environmental impact, they are excluded from the list of potential synthesis methods. In this article, an effective Zn2+ substitution with aliovalent Ga3+ in the ZnO host lattice is demonstrated, can be achieved by increasing the reductive power of the solvothermal synthesis conditions by either solvent substitution or the addition of reducing agents. This increase results in an increased oxidation affinity of the medium. This in turn promotes Ga3+ incorporation into the ZnO lattice, by skewing the reaction equilibrium towards oxygen evolution.