Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Polyisoprene-Carbon Black Nanocomposites as Tensile Strain and Pressure Sensor Materials

Publikācijas veids Anonīmi recenzēts zinātniskais raksts, kas publicēts izdevumā ar starptautisku redkolēģiju un pieejams citā indeksētā datu bāzē
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Polyisoprene-Carbon Black Nanocomposites as Tensile Strain and Pressure Sensor Materials
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.5. Materiālzinātne
Autori Māris Knite
Aleksandra Ķiploka
Valdis Teteris
Jevgenijs Kaupuzs
Atslēgas vārdi Electro-conductive polymer composites; Nanocomposite sensor materials; Large-size sensors of pressure and tensile strain
Anotācija Electrically conductive polymer composites (ECPC) are shown as prospective large-size flexible pressure and stretch sensors for detecting of dangerous deformations and vibrations of vehicle parts. Reversible change of resistance dependent on stretch and pressure is obtained in electro-conductive polymer nanocomposites. At certain concentrations of carbon nano-particles a change of electrical resistance by more than four orders is observed at 40% relative stretch. The maximum sensitivity of nanocomposites is observed in the vicinity of the transition of electro-conductive percolation. Nanocomposites exhibit a very weak semiconductor-like temperature dependence of resistance. The tenso-resistive and piezo-resistive effects are found to be practically thermally stable in the region of 20–70 ◦C. A model description of the microstructure providing extremely strong and reversible tenso-resistive and piezo-resistive effects is proposed on the basis of atomic force microscopy of the conductive surface network of the composite. Reversibility of the effects is explained by higher mobility and stronger adhesion of carbon nano-particles to the polymer matrix compared to cohesion between them. The experimental data for tensile strain are in good agreement with theoretical equations derived from a model based on the change of particle separation under applied stress.
DOI: 10.1016/j.sna.2003.08.006
Atsauce Knite, M., Ķiploka, A., Teteris, V., Kaupuzs, J. Polyisoprene-Carbon Black Nanocomposites as Tensile Strain and Pressure Sensor Materials. Sensors and Actuators A: Physical, 2004, Vol.110, Iss.1–3, 142.-149.lpp. ISSN 0924-4247. Pieejams: doi:10.1016/j.sna.2003.08.006
ID 3229