Enhancing energy efficiency within the building sector is imperative to curbing energy losses, given that this sector alone contributes to over 34% of global energy consumption. Employing a building management system, along with its regular updates, presents a strategic avenue to decrease energy usage, enhance building energy efficiency, and more. Tailored control strategies, aligned with the unique characteristics and usage patterns of each building, are essential for achieving energy savings. This article presents an evaluation of HVAC system efficiency in office buildings, utilizing a data-driven approach coupled with simulations conducted in building performance simulation software. The research explores the control strategy of an office building equipped with a constant air volume HVAC system, featuring a regularly controlled air handling unit. The objective is to boost energy efficiency while striking a balance between occupant comfort and energy consumption. The findings indicate that by analyzing measured data and adjusting the configurable parameters, the energy consumption of buildings can be significantly reduced. The close monitoring of indoor parameters by building operators and making corresponding adjustments to the HVAC system can yield energy savings of up to 16%. Leveraging these insights, this paper suggests integrating data-driven and dynamic simulation methods into building management system models to optimize HVAC systems, enhance energy efficiency, and advance ambitious carbon neutrality objectives.