The Effect of Particles on Linear and Weakly Nonlinear Instability of a Two-Phase Shallow Flows
Progress in Industrial Mathematics at ECMI 2006 2008
Sergejs Nazarovs, Andrejs Koliškins

Lineārās un vāji nelineārās teorijas metodes ir izmantotas rakstā divfāzu sekla ūdens plūsmas analīzei. Ir konstruēts amplitūdas evolūcijas vienādojums visnestabilākai perturbācijai . Ir parādīts, ka nestabilitātes attīstību vāji nelineārā režīmā raksturo Ginzburga-Landau vienādojums . Shallow flows are widespread in nature and engineering. Examples include shallow wakes (flows behind obstacles such as islands), shallow mixing layers (flows at river junctions) and shallow jets. Shallow flows, where the transverse length scale of the flow, d, is much larger than water depth, h, i.e., d/h ≫ 1, are very different from deep water flows. This difference is associated with the fact that bottom friction plays an important role in suppressing flow instability. In addition, limited water depth prevents the development of three-dimensional instabilities.


Atslēgas vārdi
Two-phase flows, weakly nonlinear theory
DOI
10.1007/978-3-540-71992-2_135
Hipersaite
http://link.springer.com/chapter/10.1007%2F978-3-540-71992-2_135

Nazarovs, S., Koliškins, A. The Effect of Particles on Linear and Weakly Nonlinear Instability of a Two-Phase Shallow Flows. No: Progress in Industrial Mathematics at ECMI 2006. Vol.12: Mathematics in Industry. Berlin ; Heidelberg: Springer Berlin Heidelberg, 2008. 784.-789.lpp. ISBN 978-3-540-71991-5. e-ISBN 978-3-540-71992-2. ISSN 1612-3956. Pieejams: doi:10.1007/978-3-540-71992-2_135

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196