Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Increasing the Effectiveness of Reinforcement Learning by Modifying the Procedure of Q-Table Values Update

Publikācijas veids Citas publikācijas konferenču (arī vietējo) ziņojumu izdevumos
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Increasing the Effectiveness of Reinforcement Learning by Modifying the Procedure of Q-Table Values Update
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.2. Datorzinātne un informātika
Autori Jurijs Čižovs
Arkādijs Borisovs
Atslēgas vārdi Q-Learning, Software Agents, Markovian Environments
Anotācija Nowadays a lot of methods of intelligent software agents learning and adaptation exist. One of them represents the reinforcement learning. This method has proved to be a mechanism capable to be a success in coping with different tasks, types of environment (with or without Markov property), discrete and continuous variables values. Taking into account that in the basis of the algorithm there are mechanisms of random selection, the methods of reinforcement learning suffer from the problem of “curse of dimensionality”. This paper offers an approach considerably reducing the space of search without losing the quality of Q-table obtained. The most ordinary but popular method of learning - SARSA(λ) (temporal-difference with eligibility traces) – is an example where the developed algorithm was applied. As a task, not less popular example of agent management in the cellular world possessing Markov property is used. The essence of this method is that the agent, as in the case of the eligibility traces, uses additional labels (marks) operating as an award. The approach does not go outside the framework of the actions available for the agent.
Atsauce Čižovs, J., Borisovs, A. Increasing the Effectiveness of Reinforcement Learning by Modifying the Procedure of Q-Table Values Update. No: Proceedings of Fourth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control (ICSCCW 2007), Turcija, Antalya, 27.-28. augusts, 2007. Antalya: b-Quadrat Verlag, 2007, 19.-27.lpp.
ID 5410