Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Building a Learner Psychophysiological Model Based Adaptive e-Learning Systems: A General Framework and its Implementation

Publikācijas veids Raksti vai nodaļas citos rakstu krājumos, kas neatbilst 3.1.prasībām, ar ISBN vai ISSN kodu
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Building a Learner Psychophysiological Model Based Adaptive e-Learning Systems: A General Framework and its Implementation
Rakstu krājuma / Monogrāfijas nosaukums Advances in Databases and Information Systems: Lecture Notes in Computer Science. Vol.5968
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.2. Datorzinātne un informātika
Autori Tatjana Rikure
Leonīds Novickis
Atslēgas vārdi Learners’ modeling, Psychophysiological state, Learning system, Adaptation, Biofeedback sensors
Anotācija The capability of recognizing the „human factor” considerably improves the Human-Computer-Interaction process and the impact of learning as well. High efficiency of a learner psychophysiological model based e-Learning systems is achieved due to adaptation ability to learners’ real-time emotional behavior during training session. In the paper an approach for building adaptive Learning systems with a model of learner’s psychophysiological state is discussed. Biofeedback sensors are used to get real-time data about user’s psychophysiological state during training sessions. The research results on measuring and analyzing user’s psychophysiological responses from biofeedback sensors are described. Idea of “dual adaptation” is presented. Case study of the conducted by author research experiments is presented.
DOI: 10.1007/978-3-642-12082-4_5
Hipersaite: http://link.springer.com/chapter/10.1007/978-3-642-12082-4_5 
Atsauce Rikure, T., Novickis, L. Building a Learner Psychophysiological Model Based Adaptive e-Learning Systems: A General Framework and its Implementation. No: Advances in Databases and Information Systems: Lecture Notes in Computer Science. Vol.5968. Berlin: Springer Berlin Heidelberg, 2010. 31.-38.lpp. ISBN 9783642120817.
ID 9201